0.27 (2), close to those observed for the title compound.

The numerical details concerning the three-dimensional network of hydrogen bridges interconnecting the NH_{3} radicals, the water molecules and the external oxygen atoms of the $\mathrm{P}_{4} \mathrm{O}_{12}$ ring anions are reported in Table 3.

References

Averbuch-Pouchot, M. T., Durif, A. \& Guitel, J. C. (1988). Acta Cryst. C44, 1189-1191.

Averbuch-Рouchot, M. T., Durif, A. \& Guitel, J. C. (1989). In preparation.
Bagieu-Beucher, M., Durif, A. \& Guttel, J. C. (1988). Acta Cryst. C44, 2063-2065.
Enraf-Nonius (1977). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
JaSkólski, M. (1987). Acta Cryst. C43, 1761-1763.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1989). C45, 49-51

Structure of Hydroxotris(2,4,6-trimethylphenyl)antimony Dichloroacetate

By H. Preut, T. Westhoff and F. Huber
Fachbereich Chemie, Universität Dortmund, Postfach 500 500, Federal Republic of Germany

(Received 21 April 1988; accepted 30 August 1988)

Abstract

Sb}(\mathrm{OH})\left\{\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{3}\right] \mathrm{C}_{2} \mathrm{HCl}_{2} \mathrm{O}_{2}, \quad M_{r}=\) 624.26, monoclinic, $P 2 / / n, \quad a=8.974$ (5), $\quad b=$ 13.307 (6), $c=23.995$ (12) $\AA, \quad \beta=95.78$ (6) ${ }^{\circ}, \quad V=$ $2850.8 \AA^{3}, Z=4, \quad D_{x}=1.455 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Ag} K \alpha)=$ $0.5608 \AA, \quad \mu=0.62 \mathrm{~mm}^{-1}, \quad F(000)=1272, \quad T=$ 291 (1) K. Final $R=0.032$ for 3821 unique observed X-ray diffractometer data. Sb has a distorted trigonal bipyramidal environment with three equatorial C (mesityl) and two apical O atoms, one from a hydroxo group and the other from a unidentately bonded carboxylate group. One of the equatorial angles $\mathrm{C}(21)-\mathrm{Sb}-(1)-\mathrm{C}(31)$ is reduced to $114.3(1)^{\circ}$, probably due to steric hindrance by mesityl groups and ligand.

Introduction. Only two X-ray diffraction studies of hydroxotriorganoantimony compounds have been reported: tris(2,6-dimethylphenyl)hydroxystibonium iodide (Ferguson, Harris \& Khan, 1987) and hydroxo-tris(2,4,6-trimethylphenyl)antimony 1 -adamantylcarboxylate (Westhoff, Huber \& Preut, 1988), and the question which parameters determine the stability of such compounds in the solid state still waits to be answered. In this respect the existence of intermolecular hydrogen bonds demands special consideration and it is remarkable that in the carboxylate compound mentioned above no hydrogen bond was found. Since the bulkiness of the mesityl and adamantyl groups might prevent the formation of hydrogen bonds it seemed worthwhile to study similar compounds. We 0108-2701/89/010049-03\$03.00
now describe the structure of a second hydroxo-tris(2,4,6-trimethylphenyl)antimony carboxylate, which actually contains an intermolecular hydrogen bond.

Experimental. The title compound was prepared from $\mathrm{SbMes}_{3}(\mathrm{OH})_{2}$ (Mes $=2,4,6$-trimethylphenyl) and dichloroacetic acid in acetone. Crystals obtained by recrystallization from methanol. Approximate dimensions $0.60 \times 0.29 \times 0.11 \mathrm{~mm} . \omega / 2 \theta$ scan. Scan speed: $2 \cdot 2-10.0^{\circ} \mathrm{min}^{-1}$ in θ. Nonius CAD-4 diffractometer, graphite-monochromated $\mathrm{Ag} K \alpha$ radiation; lattice parameters from least-squares fit with 25 reflexions up to $2 \theta=29.0^{\circ}$, six standard reflexions recorded every 2.5 h , only random deviations; 11474 reflexions measured, $1 \leq \theta \leq 20^{\circ},-10 \leq h \leq 10,0 \leq$ $k \leq 16,-29 \leq l \leq 29$; after averaging 5407 unique reflexions, $\quad R_{\text {int }}=0.019,3821$ with $I \geq 1.96 \sigma(I)$; Lorentz-polarization correction, absorption correction via ψ-scans; max./min. transmission 1.00/0.94; systematic absences ($h 0 l$) $h+l=2 n+1$, ($0 k 0$) $k=2 n+1$ conform to space group $P 2_{1} / n$; structure solution via direct methods, ΔF syntheses and full-matrix leastsquares refinement with anisotropic temperature factors for all non-H atoms and a common isotropic temperature factor for H atoms, which were placed in geometrically calculated positions ($\mathrm{C}-\mathrm{H} 0.95 \AA$); H atoms of the methyl substituents of the phenyl rings were placed such that one H atom lies in the plane of the corresponding ring; refinement on F with 3821 reflexions and 317 refined parameters; $w=4 F_{o}{ }^{2} /$ © 1989 International Union of Crystallography
$\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.045 F_{o}^{2}\right)^{2}\right] ; \quad S=1 \cdot 14, \quad R=0.032, \quad w R=$ 0.042 , max. $\Delta / \sigma=0.01$, no extinction correction, largest peak in final ΔF map $= \pm 0.4(2) \mathrm{e} \AA^{-3}$; complex neutral-atom scattering factors from International Tables for X-ray Crystallography (1974); programs: SDP (Frenz, 1981), MULTAN80 (Main et al., 1980).

Discussion. The structure of the title compound is shown in Fig. 1 and in a stereoview in Fig. 2. Positional parameters and equivalent values of the anisotropic temperature factors are given in Table 1, bond lengths and angles in Table 2.* As in $\left[\mathrm{Sb}(\mathrm{OH}) \mathrm{Mes}_{3}\right]$ $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}$ (Westhoff et al., 1988) the coordination

* Lists of structure factors, anisotropic thermal parameters, H -atom parameters and a complete list of bond distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51372 (42 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. General view of the molecule, showing atom numbering.

Fig. 2. Stereoscopic view of the unit cell (b horizontal, c vertical).

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

	$U_{\text {eq }}=\left(1 / 6 \pi^{2}\right) \sum_{l} \sum_{j} \beta_{i j} \mathrm{a}_{l} \cdot \mathrm{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
Sb (1)	0.19183 (3)	0.26912 (2)	0.66545 (1)	31
$\mathrm{Cl}(1)$	0.0330 (3)	-0.0537 (1)	0.56867 (7)	117
$\mathrm{Cl}(2)$	-0.1905 (2)	-0.0359 (2)	0.6456 (1)	141
O(1)	0.0849 (3)	0.1143 (2)	0.6527 (1)	41
O(2)	0.1554 (4)	-0.0023 (3)	0.7173 (1)	61
$\mathrm{O}(3)$	0.2829 (3)	0.4041 (2)	0.6729 (1)	41
C(1)	0.0907 (5)	0.0273 (3)	0.6737 (2)	41
C(2)	-0.0002 (6)	-0.0527 (4)	0.6389 (2)	67
C(11)	0.2843 (4)	0.2226 (3)	0.7465 (2)	33
C(12)	0.4399 (4)	0.2301 (3)	0.7599 (2)	39
C(13)	0.4993 (5)	0.1998 (3)	0.8130 (2)	44
C(14)	0.4125 (5)	0.1677 (3)	0.8531 (2)	45
C(15)	0.2594 (5)	0.1637 (3)	0.8393 (2)	45
C(16)	0.1936 (4)	0.1902 (3)	0.7865 (2)	38
C(17)	0.5491 (5)	0.2687 (4)	0.7207 (2)	56
C(18)	0.4830 (6)	0.1373 (4)	0.9108 (2)	68
C(19)	0.0236 (5)	0.1812 (4)	0.7768 (2)	53
C(21)	0.3023 (4)	0.2366 (3)	0.5926 (2)	36
C(22)	0.2866 (4)	0.3048 (3)	0.5477 (2)	39
C(23)	0.3578 (5)	0.2839 (3)	0.5008 (2)	47
C(24)	0.4471 (5)	0.1998 (4)	0.4971 (2)	50
C(25)	0.4616 (5)	0.1348 (3)	0.5421 (2)	49
C(26)	0.3901 (5)	0.1512 (3)	0.5898 (2)	41
C(27)	0.1956 (5)	0.4004 (3)	0.5469 (2)	46
C(28)	0.5266 (7)	0.1806 (5)	0.4456 (2)	77
C(29)	0.4156 (5)	0.0736 (4)	0.6355 (2)	56
$\mathrm{C}(31)$	-0.0316 (4)	0.3251 (3)	0.6480 (2)	33
$\mathrm{C}(32)$	-0.0756 (4)	0.4010 (3)	0.6833 (2)	37
C(33)	-0.2090 (4)	0.4520 (3)	0.6677 (2)	41
C(34)	-0.2946 (4)	0.4322 (3)	0.6183 (2)	39
C(35)	-0.2507 (4)	0.3552 (3)	0.5852 (2)	43
C (36)	-0.1209 (4)	0.2999 (3)	0.5985 (2)	37
$\mathrm{C}(37)$	0.0100 (5)	0.4322 (4)	0.7381 (2)	50
C(38)	-0.4359 (5)	0.4919 (4)	0.6014 (2)	57
C(39)	-0.0886 (5)	0.2166 (3)	0.5588 (2)	49

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with standard deviations

| $\mathrm{Sb}(1)-\mathrm{O}(1)$ | $2.280(3)$ | $\mathrm{C}(1)-\mathrm{O}(1)$ | $1.261(5)$ |
| :--- | :---: | :--- | :--- | :--- |
| $\mathrm{Sb}(1)-\mathrm{O}(3)$ | $1.975(3)$ | $\mathrm{C}(1)-\mathrm{O}(2)$ | $1.211(5)$ |
| $\mathrm{Sb}(1)-\mathrm{C}(11)$ | $2.128(4)$ | $\mathrm{Cl}(1)-\mathrm{C}(2)$ | $1.740(6)$ |
| $\mathrm{Sb}(1)-\mathrm{C}(21)$ | $2.139(4)$ | $\mathrm{Cl}(2)-\mathrm{C}(2)$ | $1.746(5)$ |
| $\mathrm{Sb}(1)-\mathrm{C}(31)$ | $2.140(3)$ | $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.536(7)$ |
| $\mathrm{O}(1)-\mathrm{Sb}(1)-\mathrm{O}(3)$ | $177.5(1)$ | $\mathrm{C}(21)-\mathrm{Sb}(1)-\mathrm{C}(31)$ | $114.3(1)$ |
| $\mathrm{O}(1)-\mathrm{Sb}(1)-\mathrm{C}(11)$ | $88.9(1)$ | $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Sb}(1)$ | $140.9(3)$ |
| $\mathrm{O}(1)-\mathrm{Sb}(1)-\mathrm{C}(21)$ | $86.0(1)$ | $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$ | $129.9(4)$ |
| $\mathrm{O}(1)-\mathrm{Sb}(1)-\mathrm{C}(31)$ | $85.1(1)$ | $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$ | $115.2(4)$ |
| $\mathrm{O}(3)-\mathrm{Sb}(1)-\mathrm{C}(11)$ | $93.6(1)$ | $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $114.9(4)$ |
| $\mathrm{O}(3)-\mathrm{Sb}(1)-\mathrm{C}(21)$ | $92.1(1)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Cl}(1)$ | $113.4(4)$ |
| $\mathrm{O}(3)-\mathrm{Sb}(1)-\mathrm{C}(31)$ | $94.1(1)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Cl}(2)$ | $109.4(3)$ |
| $\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{C}(21)$ | $121.2(1)$ | $\mathrm{Cl}(1)-\mathrm{C}(2)-\mathrm{Cl}(2)$ | $110.8(3)$ |
| $\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{C}(31)$ | $123.5(1)$ | | |

around the central Sb is a distorted trigonal bipyramid but in the title compound there is no interaction between Sb and the second O of the carboxylate group. The missing interaction is probably a result of hydro-gen-bond formation (see below), which causes atom $O(2)$ to be directed towards a neighbouring molecule. The distortion is probably caused by the bulkiness of the mesityl groups and of the dichloroacetate ligand.

H of the hydroxyl group, which is clearly represented by $v(\mathrm{OH})$ at $3490 \mathrm{~cm}^{-1}$ in the IR spectrum, was not localized. The short intermolecular $O(3) \cdots O(2)$ $\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ distance of $2.915(6) \AA$ can be
correlated with a hydrogen bond between these atoms. The existence of a hydrogen bond is also indicated by the position and broadness of $v(\mathrm{OH})$.
The bond distance between Sb and $\mathrm{O}(1)$ of the unidentately bonded carboxylate group is 2.280 (3) \AA indicating an appreciably high ionic character. A similar situation was found in $\left(\mathrm{SbPh}_{4}\right) \mathrm{CHO}_{2}$, the analogous $\mathrm{Sb}-\mathrm{O}$ distance being $2.223 \AA$ (Bone $\&$ Sowerby, 1979). The $\mathrm{Sb}-\mathrm{O}(\mathrm{H})$ bond of 1.975 (3) \AA is significantly shorter than the $\mathrm{Sb}-\mathrm{O}$ bonds in $\mathrm{Sb}(\mathrm{OH}) \mathrm{Ph}_{4}$ ($2.048 \AA$; Beauchamp, Bennett \& Cotton, 1969) or in $\mathrm{Sb}(\mathrm{OMe}) \mathrm{Ph}_{4}$ [2.061 (7) \AA] and $\mathrm{Sb}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{Ph}_{3}$ [mean value: 2.033 (8) \AA; Kei-wei Shen, McEwen, La Placa, Hamilton \& Wolf, 1968] which are considered to be essentially covalent.

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

Beauchamp, A. L., Bennett, M. J. \& Cotton, F. A. (1969). J. Am. Chem. Soc. 91, 297-301.
Bone, S. P. \& Sowerby, D. B. (1979). J. Chem. Res. (M), pp. 1029-1068.
Ferguson, G., Harris, G. S. \& Khan, A. (1987). Acta Cryst. C43, 2078-2081.
Frenz, B. A. (1981). Enraf-Nonius Structure Determination Package, 4th ed., version 18. Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Kei-wei Shen, Mcewen, W. E., la Placa, S. J., Hamilton, W. C. \& Wolf, A. P. (1968). J. Am. Chem. Soc. 90, 1718-1723.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Westhoff, T., Huber, F. \& Preut, H. (1988). J. Organomet. Chem. 348, 185-191.

Structures of Bis[aquadimethyl(2,6-pyridinedicarboxylato)tin(IV) hydrate] and Bis[aquadi-n-butyl(2,6-pyridinedicarboxylato)tin(IV)]

By Friedo Huber, Hans Preut and Eckehard Hoffmann
Fachbereich Chemie, Universität Dortmund, Postfach 500 500, D-4600 Dortmund 50, Federal Republic of Germany

and Marcel Gielen
Free University of Brussels VUB, Faculty of Engineering AOSC Unit, Pleinlaan 2, B-1050 Brussels, Belgium

(Received 17 March 1988; accepted 17 October 1988)

Abstract

I) $\left\{\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] . \mathrm{H}_{2} \mathrm{O}\right\}_{2}, M_{r}$ $=699.79$, monoclinic, $P 2^{\prime} / c, a=11.576$ (6), $b=$ 13.266 (7), $\quad c=7.747$ (5) $\AA, \quad \beta=92.67(5)^{\circ}, \quad V=$ 1188 (1) $\AA^{3}, Z=2, D_{x}=1.956 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Ag} K \alpha)=$ $0.56087 \AA, \quad \mu=1.1 \mathrm{~mm}^{-1}, \quad F(000)=688, \quad T=$ 291 (1) K, final $R=0.040$ for 2118 unique observed diffractometer data $[F \geq 2 \cdot 0 \sigma(F)]$. (II) [$\mathrm{Sn}(n-$ $\left.\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}, \quad M_{r}=832.08$, tetragonal, $P 4_{2} / n, \quad a=17.684$ (12),$\quad c=11.148$ (12) $\AA, \quad V=$ 3486 (5) $\AA^{3}, Z=4, D_{x}=1.585 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Ag} K \alpha)=$ $0.56087 \AA, \quad \mu=0.78 \mathrm{~mm}^{-1}, \quad F(000)=1680, \quad T=$ 291 (1) K, final $R=0.055$ for 2410 unique observed diffractometer data $[F \geq 2.0 \sigma(F)$]. In both compounds Sn has a distorted pentagonal bipyramidal environment, the alkyl groups being in the apical positions. Both carboxylate groups of the tridentate ligand are unidentate. Two molecular units are liriked via two asymmetric $\mathrm{Sn}-\mathrm{O}$ (carboxylate)- Sn bridges to form a

planar $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ ring. Four O atoms ($2 \times$ bridging, $1 \times$ water, $1 \times$ carboxylate) and one N atom form the equatorial plane. Linking of the dimeric units by hydrogen bonds is effected by the water of hydration in the $\mathrm{Me}_{2} \mathrm{Sn}$ complex, and by the coordinated water molecule in the $\mathrm{Bu}_{2} \mathrm{Sn}$ complex.

Introduction. $\quad \mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{H}_{2} \mathrm{O}\right) L \quad\left(\mathrm{H}_{2} L=2,6\right.$-pyridinedicarboxylic acid) has a polymeric chain structure in the crystalline state, the chains being formed by bidentate carboxylate groups and intrachain hydrogen bridges and being linked by interchain hydrogen bridges. Aside from this particular structural feature this compound earns attention since it adds one more example to the few organotin compounds with heptacoordinated Sn and since it proved to possess high in vitro activity against various leukemic and tumor cells (Gielen et al., 1987). We now report on the structures of two (C) 1989 International Union of Crystallography

